IMO Shortlist 1985 problem 21


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
The tangents at B and C to the circumcircle of the acute-angled triangle ABC meet at X. Let M be the midpoint of BC. Prove that

(a) \angle BAM = \angle CAX, and

(b) \frac{AM}{AX} = \cos\angle BAC.
Izvor: Međunarodna matematička olimpijada, shortlist 1985