Vrijeme: 12:50

Henτ | Henτ #2

Dan je trokut ABC sa AB=15, BC=17 i CA=8. Kružnica \omega_a sa središtem na BC dira dužine AB i AC. Kružnice \omega_b i \omega_c su definirane analogno. Četvrtu kružnicu \omega radijusa R iznutra diraju \omega_a, \omega_b i \omega_c. R se može zapisati kao \frac{m}{n}, gdje su m i n relativno prosti prirodni brojevi. Izračunaj m+n.

Attachment pravokutni.png

In triangle ABC, the side lengths are AB = 15, BC = 17 and CA =3. The segments AB and AC touch the circle \omega_a whose center lies on the segment BC. Circles \omega_b and \omega_c are defined analogously. The fourth circle \omega has a radius R and is touched internally by \omega_a, \omega_b and \omega_c. R can be written as \frac {m} {n}, where m and n are relatively prime natural numbers. Calculate m + n

Attachment pravokutni.png