Vrijeme: 12:52

Henτ | Henτ #4

Kružnica \omega radijusa r izvana se dira sa kružnicama k_1 i k_2, pri čemu su pravci t_1 i t_2 vanjske tangente na sve tri kružnice. Četvrtu kružnicu k kružnice k_1 i k_2 diraju iznutra. Neka su \omega_1 i \omega_2 radijusa r_1=6 i r_2=14 najveće kružnice koje se mogu upisati odsječcima koje određuju k, pravci t_1 i t_2 te ne sadržavaju \omega. Radijus kružnice \omega može se zapisati kao m\sqrt{n}+p gdje su m, n i p prirodni brojevi, a n je kvadratno slobodan. Izračunaj m+n+p.

Attachment 6kruznica.png

The circle \omega of radius r touches the circles k_1 and k_2 externally, and lines t_1 and t_2 are the external tangents to all three circles. The circles k_1 and k_2 are tangent externally to the fourth circle k. Let \omega_1 and \omega_2 of radii r_1 = 6 and r_2 = 14 be the largest circles that can be inscribed in the areas determined by k, t_1 and t_2, excluding the area that contains \omega. The radius of \omega can be written as m \sqrt{n} + p where m, n and p are natural numbers, and n is not divisible by any perfect square (except 1). Calculate m + n + p.

Attachment 6kruznica.png