Vrijeme: 02:04

Henτ | Henτ #3

Neka je \omega najveća kružnica koja se može upisati u manji odsječak koji određuju pravac l i kružnica k radijusa r=17. Kružnica \omega_2 sukladna \omega dira l i sadržana je u većem odsječku koji l odsjeca od k. Još dvije kružnice \omega_1 i \omega_3 radijusa r_1=5 i r_3=8 diraju l, \omega_2 izvana i k iznutra. Izračunaj radijus \omega.

Attachment zadnji.png

Let \omega be the largest circle that can be inscribed in the smaller region determined by line l and circle k of radius r = 17. The circle \omega_2 is congruent to \omega, touches l, and is contained inside the larger region determined by l and k. Two more circles, \omega_1 and \omega_3 of radii r_1 = 5 and r_3 = 8, touch l and \omega_2 externally and k internally. Calculate the radius of \omega.

Attachment zadnji.png