U trapezu

s osnovicama

i

je

. Odredi duljinu dužine

ako je duljina srednjice trapeza

, a duljine osnovica odnose se kao

.
In the trapezium

, the bases are

and

. It is known that

, that the length of the midline is

, and that the ratio of the lengths of the bases is

. What is the length of the segment

?
[lang=hr]
U trapezu $ABCD$ s osnovicama $\overline{AB}$ i $\overline{CD}$ je $\angle ADC= \angle ACB$. Odredi duljinu dužine $\overline{AC}$ ako je duljina srednjice trapeza $13$, a duljine osnovica odnose se kao $4~\colon9$.
[/lang]
[lang=en]
In the trapezium $ABCD$, the bases are $\overline{AB}$ and $\overline{CD}$. It is known that $\angle ADC= \angle ACB$, that the length of the midline is $13$, and that the ratio of the lengths of the bases is $4~\colon9$. What is the length of the segment $\overline{AC}$?
[/lang]