Neka je
beskonačni niz realnih brojeva zadan s
Odredi najmanji prirodan broj
takav da za sve
postoji broj
,
takav da
nije dobro definiran.
Let
be an infinite sequence of real numbers given by
Determine the least positive integer
such that for all
there exists a nonnegative integer
,
such that
is not well defined.
[lang=hr]
Neka je \(a_1,a_2,\ldots\) beskonačni niz realnih brojeva zadan s
\[a_1=x,\ \ a_2=y,\ \ a_{n+2}=\left \lfloor \frac{a_{n+1}}{a_n} \right \rfloor \cdot \frac{a_{n+1}-1}{a_{n+1}-1}\ \ \forall n \in \mathbb{N}\]
Odredi najmanji prirodan broj \(m\) takav da za sve \(x,y \geq 0\) postoji broj \(k \in \mathbb{N}_0\), \(k \leq m\) takav da \(a_k\) nije dobro definiran.\\
[/lang]
[lang=en]
Let \(a_1,a_2,\ldots\) be an infinite sequence of real numbers given by
\[a_1=x,\ \ a_2=y,\ \ a_{n+2}=\left \lfloor \frac{a_{n+1}}{a_n} \right \rfloor \cdot \frac{a_{n+1}-1}{a_{n+1}-1}\ \ \forall n \in \mathbb{N}\]
Determine the least positive integer \(m\) such that for all \(x,y\geq 0\) there exists a nonnegative integer \(k\), \(k \leq m\) such that \(a_k\) is not well defined.
[/lang]