Vrijeme: 02:02

Pec na domenu | Domain no-no #4

Neka je a_1,a_2,\ldots beskonačni niz realnih brojeva zadan s a_1=x,\ \ a_2=y,\ \ a_{n+2}=\left \lfloor \frac{a_{n+1}}{a_n} \right \rfloor \cdot \frac{a_{n+1}-1}{a_{n+1}-1}\ \ \forall n \in \mathbb{N} Odredi najmanji prirodan broj m takav da za sve x,y \geq 0 postoji broj k \in \mathbb{N}_0, k \leq m takav da a_k nije dobro definiran.
Let a_1,a_2,\ldots be an infinite sequence of real numbers given by a_1=x,\ \ a_2=y,\ \ a_{n+2}=\left \lfloor \frac{a_{n+1}}{a_n} \right \rfloor \cdot \frac{a_{n+1}-1}{a_{n+1}-1}\ \ \forall n \in \mathbb{N} Determine the least positive integer m such that for all x,y\geq 0 there exists a nonnegative integer k, k \leq m such that a_k is not well defined.