Vrijeme: 02:03

Podijeljeni zajedno | Divided Together #3

Neka je N=(2\cdot 3 \cdot 5\cdot 7\cdot 11)^{100}. Neka su a_1, a_2, \ldots, a_{2021} prirodni brojevi. Za j \in \{1, 2, \ldots, 2021\}, neka je b_j najveći zajednički djelitelj brojeva a_1, a_2, \ldots, a_{j-1}, a_{j+1}, \ldots, a_{2021}. Pretpostavimo da je b_1+b_2+\ldots+b_{2021}=N. Neka je X najmanja vrijednost koju može poprimiti izraz a_1+a_2+\ldots+a_{2021}. Odredi \frac{X}{N}.
Let N=(2\cdot 3 \cdot 5\cdot 7\cdot 11)^{100}. Let a_1, a_2, \ldots, a_{2021} be positive integers. For j \in \{1, 2, \ldots, 2021\}, let b_j be the greatest common divisor of a_1, a_2, \ldots, a_{j-1}, a_{j+1}, \ldots, a_{2021}. Suppose that b_1+b_2+\ldots+b_{2021}=N. Let X be the least possible value that a_1+a_2+\ldots+a_{2021} can obtain. Find \frac{X}{N}.