Vrijeme: 02:03

Polinomi | Polynomials #4

Zadan je polinom P(x) = x^3 - 7x^2 + 10x + a koji ima nultočke x_1, x_2 i x_3. Odredite vrijednost parametra a tako da je izraz | x_1^5 + x_2^5 + x_3^5 | minimiziran. Moguće je pokazati da se odgovor može napisati u obliku \frac{n}{m} za prirodne brojeve n i m.
The polynomial P(x) = x^3 - 7x^2 + 10x + a is given. It's roots are x_1, x_2 and x_3. Determine the value of the parameter a such that the expression | x_1^5 + x_2^5 + x_3^5 | is minimized. It can be shown that the answer has the form of \frac{n}{m} for positive integers n and m.