Vrijeme: 02:03

Pa to je strašno | Well that's scary. #2

Za n \in \mathbb{N} definirajmo skupove M_n na sljedeći način:
- M_1 = \{ 2 \}
- za n \geq 2, M_n je najmanji skup koji sadrži M_{n-1} te koji sadrži sve proste faktore od p_1p_2...p_k+1, za sve podskupove \{p_1,p_2,...,p_k\} od M_{n-1}
Definirajmo M = M_1 \cup M_2 \cup M_3 \cup ..., te neka je m(n) oznaka za n-ti po redu broj u M, a p(n) za n-ti po redu prost broj.
Odredi m(202142069)-p(202142069).
For n \in \mathbb{N} define the set M_n as follows:
- M_1 = \{ 2 \}
- for n \geq 2, M_n is the smallest set that contains M_{n-1} and that also contains all of the factors of p_1p_2...p_k + 1 for all subsets \{p_1, p_2, ..., p_k\} of M_{n-1}.
Define M = M_1 \cup M_2 \cup M_3 \cup ... and let m(n) denote the n-th number in the set M (when ordered by value), and let p(n) denote the n-th prime.
Calculate m(202142069)-p(202142069).