Za

definirajmo skupove

na sljedeći način:
-
- za

,

je najmanji skup koji sadrži

te koji sadrži sve proste faktore od

, za sve podskupove

od

Definirajmo

, te neka je

oznaka za

-ti po redu broj u

, a

za

-ti po redu prost broj.
Odredi

.
For

define the set

as follows:
-
- for

,

is the smallest set that contains

and that also contains all of the factors of

for all subsets

of

.
Define

and let

denote the

-th number in the set

(when ordered by value), and let

denote the

-th prime.
Calculate

.
[lang=hr]
Za $n \in \mathbb{N}$ definirajmo skupove $M_n$ na sljedeći način: \\
- $M_1 = \{ 2 \}$ \\
- za $n \geq 2$, $M_n$ je najmanji skup koji sadrži $M_{n-1}$ te koji sadrži sve proste faktore od $p_1p_2...p_k+1$, za sve podskupove $ \{p_1,p_2,...,p_k\}$ od $M_{n-1}$\\
Definirajmo $M = M_1 \cup M_2 \cup M_3 \cup ...$, te neka je $m(n)$ oznaka za $n$-ti po redu broj u $M$, a $p(n)$ za $n$-ti po redu prost broj. \\
Odredi $m(202142069)-p(202142069)$.
[/lang]
[lang=en]
For $n \in \mathbb{N}$ define the set $M_n$ as follows: \\
- $M_1 = \{ 2 \}$ \\
- for $n \geq 2$, $M_n$ is the smallest set that contains $M_{n-1}$ and that also contains all of the factors of $p_1p_2...p_k + 1$ for all subsets $\{p_1, p_2, ..., p_k\}$ of $M_{n-1}$. \\
Define $M = M_1 \cup M_2 \cup M_3 \cup ...$ and let $m(n)$ denote the $n$-th number in the set $M$ (when ordered by value), and let $p(n)$ denote the $n$-th prime. \\
Calculate $m(202142069)-p(202142069)$.
[/lang]