Vrijeme: 02:08

Pa to je strašno | Well that's scary. #3

Neka je (x_n),n = 1,2,... niz definiran sa x_1 = 9522 i x_1+x_2+...+x_{n-1} = (n^2-1)x_n ,\forall n \geq 2 Neka je niz a_n=x_n+\dfrac{1}{n}S_n, n =1,2,3,... gdje je S_n= x_1 + x_2 +...+x_n. Odredi sve n za koje je a_n potpuni kvadrat prirodnog broja. Ako je više odgovora napišite ih uzlazno.
Let (x_n),n = 1,2,... be a sequence defined by x_1 = 9522 and x_1+x_2+...+x_{n-1} = (n^2-1)x_n ,\forall n \geq 2 Let the sequence a_n=x_n+\dfrac{1}{n}S_n, n =1,2,3,... where S_n= x_1 + x_2 +...+x_n. Determine the values of n for which the terms of the sequence a_n are perfect squares of an integer. If there is more than one answer, write them in ascending order.