Vrijeme: 12:39

MinMax matura | MinMax finals #3

Odredi najmanji t \in \mathbb{R} takav da za sve 0 \leq a_1,a_2,\ldots ,a_{2021} <1 koji zadovoljavaju a = \sqrt{\frac{a_1^2+a_2^2+\ldots+a_{2021}^2}{2021}} \geq t vrijedi \frac{a_1}{1-a_1^2} + \frac{a_2}{1-a_2^2} + \ldots +\frac{a_{2021}}{1-a_{2021}^2} \geq \frac{2021a}{1-a^2}.
Determine the least t \in \mathbb{R} such that for all 0\leq a_1,a_2,\ldots ,a_{2021}<1 that satisfy a = \sqrt{\frac{a_1^2+a_2^2+\ldots+a_{2021}^2}{2021}} \geq t we have \frac{a_1}{1-a_1^2} + \frac{a_2}{1-a_2^2} + \ldots +\frac{a_{2021}}{1-a_{2021}^2} \geq \frac{2021a}{1-a^2}.