Vrijeme: 12:45

MinMax matura | MinMax finals #2

Odredi najmanji c \in \mathbb{R} takav da za sve x_1,x_2,\ldots ,x_n, \ldots takve da je x_{k+1}\geq x_1+x_2+\ldots +x_k za svaki k \in \mathbb{N}, nejednakost \sqrt{x_1}+\sqrt{x_2}+\ldots+\sqrt{x_n} \leq c\sqrt{x_1+x_2+\ldots+x_n} vrijedi za svaki n \in \mathbb{N}.
Determine the smallest c \in \mathbb{R} such that for all x_1,x_2,\ldots ,x_n,\ldots that satisfy x_{k+1}\geq x_1+x_2+\ldots +x_k for all k \in \mathbb{N}, the inequality \sqrt{x_1}+\sqrt{x_2}+\ldots+\sqrt{x_n} \leq c\sqrt{x_1+x_2+\ldots+x_n} holds for all n \in \mathbb{N}.