Vrijeme: 07:46

From Russia With log | From Russia With log #4

Kažemo da je niz brojeva x_1, x_2,\dots geometrijski ako postoje brojevi x i q takvi da je x_1 = x i za svaki sljedeći član niza vrijedi x_{n + 1} = x_n \cdot q. Koliko ima parova prirodnih brojeva (x, q) koji zadovoljavaju \log_8 x_1 + \log_8 x_2 + \dots + \log_8 x_{12} = 2006?


A sequence of numbers x_1, x_2,\dots is called geometric if one can find numbers x and q such that x_1 = x and every other term satisfies the condition x_{n + 1} = x_n \cdot q. How many ordered pairs (x, q) of positive integers are there that satisfy the equation \log_8 x_1 + \log_8 x_2 + \dots + \log_8 x_{12} = 2006?