Vrijeme: 21:16

Ekstremni uvjeti | Extreme conditions #5

Nađi najveći realni broj \alpha tako da ako su a_1, a_2, a_3, a_4 >0 takvi da za sve i,j,k \in \mathbb{N}, 1\leqslant i<j<k \leqslant 4 vrijedi a_{i}^2+a_{j}^2+a_{k}^2 \geqslant 2 (a_{i}a_{j}+a_{j}a_{k}+a_{k}a_{i}), onda nužno vrijedi i a_1^2+a_2^2+a_3^2+a_4^2\geqslant \alpha \cdot(a_1a_2+a_1a_3+a_1a_4+a_2a_3+a_2a_4+a_3a_4)

Find the largest real number \alpha such that: if a_1, a_2, a_3, a_4 >0 are such that for all i,j,k \in \mathbb{N}, 1\leqslant i<j<k \leqslant 4 the expression a_{i}^2+a_{j}^2+a_{k}^2 \geqslant 2 (a_{i}a_{j}+a_{j}a_{k}+a_{ k}a_{i}) is valid, then necessarily the expression a_1^2+a_2^2+a_3^2+a_4^2\geqslant \alpha \cdot(a_1a_2+a_1a_3+a_1a_4+a_2a_3+a_2a_4+a_3a_4)

is valid as well.