Graf, sastavljen od 2022 vrhova imenovanim brojevima
je zadan tako da su vrhovi
povezani ako i samo ako vrijedi
ili
. Odredi kromatski broj grafa (Kromatski broj je minimalan broj boja potreban da se vrhovi grafa oboje tako da dva susjedna vrha nisu iste boje). NAPOMENA: nijedan vrh grafa nije povezan sam sa sobom.
Graph, constructed out of 2022 vertices named by the numbers
contains an edge
so that the statement (
or
) is true. Determine the chromatic number of the graph (Chromatic number is the minimal number of coulors necessary to paint the vertices of a graph so that two neighbouring vertices are not the same coulor). NOTE: a vertex of the graph is not connected to itself.
[lang=hr]
Graf, sastavljen od 2022 vrhova imenovanim brojevima $1,2,3,4,...2022$ je zadan tako da su vrhovi $(x,y)$ povezani ako i samo ako vrijedi $|x-y|\equiv 2 \mod{3}$ ili $|x-y|\equiv 0 \mod{3}$. Odredi kromatski broj grafa (Kromatski broj je minimalan broj boja potreban da se vrhovi grafa oboje tako da dva susjedna vrha nisu iste boje). NAPOMENA: nijedan vrh grafa nije povezan sam sa sobom.
[/lang]
[lang=en]
Graph, constructed out of 2022 vertices named by the numbers $1,2,3,4,...2022$ contains an edge $xy$ so that the statement ( $|x-y|\equiv 2 \mod{3}$ or $|x-y|\equiv 0 \mod{3}$) is true. Determine the chromatic number of the graph (Chromatic number is the minimal number of coulors necessary to paint the vertices of a graph so that two neighbouring vertices are not the same coulor). NOTE: a vertex of the graph is not connected to itself. \\
[/lang]