Vrijeme: 20:29

Nužno zlo | Necessary evil #1

Neka su a,b,c > 0 pozitivni realni brojevi. Za svaku od sljedećih tvrdnji odredi je li ona nužno istinita: \begin{enumerate}
\item \(a^3+b^3+c^3 \geq 3abc,\) % da
\item \(a^2+b^2+c^2 \geq a+b+c,\) % ne
\item \(\dfrac{a}{b} + \dfrac{b}{c} + \dfrac{c}{a} \geq a+b+c\), % ne
\item \(\dfrac{a^2}{b^2} + \dfrac{b^2}{c^2} + \dfrac{c^2}{a^2} \geq \dfrac{a}{c} + \dfrac{b}{a} + \dfrac{c}{b},\) % da
\item \(\dfrac{a}{2b^3+1} + \dfrac{b}{2c^3+1} + \dfrac{c}{2a^3+1} \geq 1\), % ne
\item \((ab+bc+ac)^2 \geq 3abc(a+b+c)\) % da
\end{enumerate} Odgovor zapišite kao niz od 6 elemenata od kojih je svaki 0 (nije nužno istinita tvrdnja) ili 1 (nužno istinita tvrdnja). Primjerice 1,0,1,0,1,0.

Let a,b,c > 0 be positive real numbers. For each of the following claims determine whether it necessarily holds true: \begin{enumerate}
\item \(a^3+b^3+c^3 \geq 3abc,\) % da
\item \(a^2+b^2+c^2 \geq a+b+c,\) % ne
\item \(\dfrac{a}{b} + \dfrac{b}{c} + \dfrac{c}{a} \geq a+b+c\), % ne
\item \(\dfrac{a^2}{b^2} + \dfrac{b^2}{c^2} + \dfrac{c^2}{a^2} \geq \dfrac{a}{c} + \dfrac{b}{a} + \dfrac{c}{b},\) % da
\item \(\dfrac{a}{2b^3+1} + \dfrac{b}{2c^3+1} + \dfrac{c}{2a^3+1} \geq 1\), % ne
\item \((ab+bc+ac)^2 \geq 3abc(a+b+c)\) % da
\end{enumerate} Write the answer as a sequence of 6 elements, each of which is either a 0 (the claim isn't necessarily true) or a 1 (the claim is necessarily true). E.g. 1,0,1,0,1,0.