Neka su
pozitivni realni brojevi. Za svaku od sljedećih tvrdnji odredi je li ona nužno istinita:
Odgovor zapišite kao niz od
elemenata od kojih je svaki
(nije nužno istinita tvrdnja) ili
(nužno istinita tvrdnja). Primjerice
.
Let
be positive real numbers. For each of the following claims determine whether it necessarily holds true:
Write the answer as a sequence of
elements, each of which is either a
(the claim isn't necessarily true) or a
(the claim is necessarily true). E.g.
.
[lang=hr]
Neka su \(a,b,c > 0\) pozitivni realni brojevi. Za svaku od sljedećih tvrdnji odredi je li ona nužno istinita:
\begin{enumerate}
\item \(a^3+b^3+c^3 \geq 3abc,\) % da
\item \(a^2+b^2+c^2 \geq a+b+c,\) % ne
\item \(\dfrac{a}{b} + \dfrac{b}{c} + \dfrac{c}{a} \geq a+b+c\), % ne
\item \(\dfrac{a^2}{b^2} + \dfrac{b^2}{c^2} + \dfrac{c^2}{a^2} \geq \dfrac{a}{c} + \dfrac{b}{a} + \dfrac{c}{b},\) % da
\item \(\dfrac{a}{2b^3+1} + \dfrac{b}{2c^3+1} + \dfrac{c}{2a^3+1} \geq 1\), % ne
\item \((ab+bc+ac)^2 \geq 3abc(a+b+c)\) % da
\end{enumerate}
Odgovor zapišite kao niz od \(6\) elemenata od kojih je svaki \(0\) (nije nužno istinita tvrdnja) ili \(1\) (nužno istinita tvrdnja). Primjerice \(1,0,1,0,1,0\).
[/lang]
[lang=en]
Let \(a,b,c > 0\) be positive real numbers. For each of the following claims determine whether it necessarily holds true:
\begin{enumerate}
\item \(a^3+b^3+c^3 \geq 3abc,\) % da
\item \(a^2+b^2+c^2 \geq a+b+c,\) % ne
\item \(\dfrac{a}{b} + \dfrac{b}{c} + \dfrac{c}{a} \geq a+b+c\), % ne
\item \(\dfrac{a^2}{b^2} + \dfrac{b^2}{c^2} + \dfrac{c^2}{a^2} \geq \dfrac{a}{c} + \dfrac{b}{a} + \dfrac{c}{b},\) % da
\item \(\dfrac{a}{2b^3+1} + \dfrac{b}{2c^3+1} + \dfrac{c}{2a^3+1} \geq 1\), % ne
\item \((ab+bc+ac)^2 \geq 3abc(a+b+c)\) % da
\end{enumerate}
Write the answer as a sequence of \(6\) elements, each of which is either a \(0\) (the claim isn't necessarily true) or a \(1\) (the claim is necessarily true). E.g. \(1,0,1,0,1,0\).
[/lang]