Neka su
pozitivni realni brojevi koji zadovoljavaju
. Za svaku od sljedećih tvrdnji odredi je li ona nužno istinita:
Odgovor zapišite kao niz od
elemenata od kojih je svaki
(nije nužno istinita tvrdnja) ili
(nužno istinita tvrdnja). Primjerice
.
Let
be positive real numbers that satisfy
. For each of the following claims determine whether it necessarily holds true:
Write the answer as a sequence of
elements, each of which is either a
(the claim isn't necessarily true) or a
(the claim is necessarily true). E.g.
.
[lang=hr]
Neka su \(a,b,c > 0\) pozitivni realni brojevi koji zadovoljavaju \(abc = 1\). Za svaku od sljedećih tvrdnji odredi je li ona nužno istinita:
\begin{enumerate}
\item \(\dfrac{ab}{a^5+b^5+ab} + \dfrac{bc}{b^5+c^5+bc} + \dfrac{ac}{a^5+c^5+ac} \geq 1,\) % ne
\item \(\dfrac{a}{b} + \dfrac{b}{c} + \dfrac{c}{a} \geq a+b+c,\) % da
\item \((1+a)(1+b)(1+c) \geq 8,\) % da
\item \(8 \geq (a+b)(b+c)(a+c)(a+b-c)(b+c-a)(a+c-b)\), % da
\item \(3 \left( \dfrac{a^2}{b} + \dfrac{b^2}{c} + \dfrac{c^2}{a} \right) \geq (a^2+b^2+c^2)^2,\) % ne
\item \(a^3+b^3+c^3 + 3 \geq \dfrac{a+b}{c} + \dfrac{b+c}{a} + \dfrac{a+c}{b}\) % da
\end{enumerate}
Odgovor zapišite kao niz od \(6\) elemenata od kojih je svaki \(0\) (nije nužno istinita tvrdnja) ili \(1\) (nužno istinita tvrdnja). Primjerice \(1,0,1,0,1,0\).
[/lang]
[lang=en]
Let \(a,b,c > 0\) be positive real numbers that satisfy \(abc = 1\). For each of the following claims determine whether it necessarily holds true:
\begin{enumerate}
\item \(\dfrac{ab}{a^5+b^5+ab} + \dfrac{bc}{b^5+c^5+bc} + \dfrac{ac}{a^5+c^5+ac} \geq 1,\) % ne
\item \(\dfrac{a}{b} + \dfrac{b}{c} + \dfrac{c}{a} \geq a+b+c,\) % da
\item \((1+a)(1+b)(1+c) \geq 8,\) % da
\item \(8 \geq (a+b)(b+c)(a+c)(a+b-c)(b+c-a)(a+c-b)\), % da
\item \(3 \left( \dfrac{a^2}{b} + \dfrac{b^2}{c} + \dfrac{c^2}{a} \right) \geq (a^2+b^2+c^2)^2,\) % ne
\item \(a^3+b^3+c^3 + 3 \geq \dfrac{a+b}{c} + \dfrac{b+c}{a} + \dfrac{a+c}{b}\) % da
\end{enumerate}
Write the answer as a sequence of \(6\) elements, each of which is either a \(0\) (the claim isn't necessarily true) or a \(1\) (the claim is necessarily true). E.g. \(1,0,1,0,1,0\).
[/lang]