Vrijeme: 08:09

Budi mi kutomjer? | Would you be my protractor? #5

Zadan je trokut ABC takav da vrijedi |AB| = \frac{\overline{AC}}{2} + \overline{BC}. Izvan trokuta konstruirana su dva polukruga kojima su promjeri \overline{AB} i \overline{BC}. Neka je T nožište iz A na zajedničku tangentu polukrugova. Odredi \angle CAT. (rješenje zapišite u stupnjevima bez mjerne jedinice npr. "45")

Consider a triangle ABC in which |AB| = \frac{\overline{AC}}{2} + \overline{BC}. Outside of that triangle we construct two semicircles with diameters \overline{AB} and \overline{BC}. Let T be the point at intersection of perpendicular from A with the mutual tangent of semicircles. Determine \angle CAT. (Write the solution in degrees but without measuring unit, e.g. "45".)