Vrijeme: 02:06

Boris mi nije dao ime | Boris didn't name this one #2

U trokutu ABC s najvećom stranicom CA vrijedi AB=279, BC=482. Neka je P polovište stranice CA, S točka na stranici AC tako da je BS simetrala \angle ABC. Neka je Q točka na BC takva da je SQ \perp BC. Neka je I=SQ \cap BP. Nađi \frac{SI}{QI}. Odgovor zaokruži na 4 decimale.
In the triangle ABC with the largest side CA, AB=279, BC=482 is valid. Let P be the midpoint of side CA, S be a point on side AC such that BS is the bisector of \angle ABC. Let Q be a point on BC such that SQ \perp BC. Let I=SQ \cap BP. Find \frac{SI}{QI}. Round the answer to 4 decimal places.