Vrijeme: 07:50

Crnogorski lanac | Montenegrian chain #4

Dan je prost broj p. Neka je f(p) broj uređenih četvorki (a, b, c, d) prirodnih brojeva koji nisu djeljivi s p koje zadovoljavaju jednadžbe ac + bd = p(a + c) i bc - ad = p(b - d).

Odredi zbroj f(p) za sve proste p<10^7, tj. \sum_{p\text{ prost}}^{p < 10^7} f(p) .

There is a prime number p. Let f(p) be the number of ordered fours (a, b, c, d) of natural numbers that are not divisible by p that satisfy the equations ac + bd = p(a + c) and bc - ad = p(b - d).

Find the sum of f(p) for all prime p<10^7, that is \sum_{p\text{ prost}}^{p < 10^7} f(p).