Ako za
![\forall n \in \mathbb{N}](/media/m/8/9/7/897974980807b4e362f21dfaa0c6630a.png)
,
![f(n)](/media/m/d/3/e/d3e47283bffbbf24c97f0c6474d5a82d.png)
predstavlja broj realnih rješenja jednadžbe
![x^2 - nx + 1022121 = 0](/media/m/0/2/5/025b7f295eaa905ec11e320fd819c57c.png)
odredi zbroj
.
Let
![f(n)](/media/m/d/3/e/d3e47283bffbbf24c97f0c6474d5a82d.png)
be the number of real solutions to equation
for
Determine
![\sum_{n=2}^{4044} f(n)](/media/m/2/d/6/2d6aaa853f5120c53c15976a3b41be25.png)
.
[lang=hr]
Ako za $\forall n \in \mathbb{N}$, $f(n)$ predstavlja broj realnih rješenja jednadžbe
$$x^2 - nx + 1022121 = 0$$
odredi zbroj $\sum_{n=2}^{4044} f(n)$.
[/lang]
[lang=en]
Let $f(n)$ be the number of real solutions to equation $$x^2 - nx + 1022121 = 0, \forall n \in \mathbb{N}$$ \\ for $\forall n \in \mathbb{N}$ \\
Determine $\sum_{n=2}^{4044} f(n)$.
[/lang]