Vrijeme: 20:41

Algebarske avanture prijatnog Lovre | Algebraic adventures of Lovre #2

Nakon par čaša dedinog domaćeg soka Lovro je odlučio krenuti na sljedeći zadatak koji glasi:

Neka su a,b,c nenegativni realni brojevi. Odredi miminum izraza:

\dfrac{\dfrac{a}{b^2+c^2}+\dfrac{b}{a^2+c^2}+\dfrac{c}{a^2+b^2}}{\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}}

After a couple of glasses of his grandfather's homemade juice, Lovro decided to start the next task, which goes:

Let a,b,c be non-negative real numbers. Determine the minimum of the expression:

\dfrac{\dfrac{a}{b^2+c^2}+\dfrac{b}{a^2+c^2}+\dfrac{c}{a^2+b^2}} {\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}}