Nakon par čaša dedinog domaćeg soka Lovro je odlučio krenuti na sljedeći zadatak koji glasi:
Neka su nenegativni realni brojevi. Odredi miminum izraza:
After a couple of glasses of his grandfather's homemade juice, Lovro decided to start the next task, which goes:
Let be non-negative real numbers. Determine the minimum of the expression:
[lang=hr]
Nakon par čaša dedinog domaćeg soka Lovro je odlučio krenuti na sljedeći zadatak koji glasi:
Neka su $a,b,c$ nenegativni realni brojevi. Odredi miminum izraza:
$$\dfrac{\dfrac{a}{b^2+c^2}+\dfrac{b}{a^2+c^2}+\dfrac{c}{a^2+b^2}}{\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}}$$
[/lang]
[lang=en]
After a couple of glasses of his grandfather's homemade juice, Lovro decided to start the next task, which goes:
Let $a,b,c$ be non-negative real numbers. Determine the minimum of the expression:
$$\dfrac{\dfrac{a}{b^2+c^2}+\dfrac{b}{a^2+c^2}+\dfrac{c}{a^2+b^2}} {\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}}$$
[/lang]