Vrijeme: 20:33

Algebarske avanture prijatnog Lovre | Algebraic adventures of Lovre #4

Lovro je shvatio da je popio cijelu bocu dedinog soka pa je krenuo po drugu, na putu je naišao na još jedan sladak zadatak koji galsi:

Dano je 2022 realnih brojeva a_1,a_2, ... , a_{2022} većih od 1, za koje također vrijedi |a_k - a_{k +1}| < 1 za 1 \leq k \leq 2021. Nađi najmanji M tako da vrijedi \dfrac{a_1}{a_2} + \dfrac{a_2}{a_3} + \dfrac{a_3}{a_4} + \ldots + \dfrac{a_{2021}}{a_{2022}} + \dfrac{a_{2022}}{a_1} < M .

Odgovor zaokružite na cijeli broj.

Lovro realized that he had drunk the whole bottle of grandfather's juice, so he went to get another one, on his way he came across another sweet task:

2022 real numbers a_1,a_2, ... , a_{2022} all greater than 1 are given, for which the expression|a_k - a_{k +1}| < 1 is valid for 1 \leq k \leq 2021. Find the smallest M so that the following is true: \dfrac{a_1}{a_2} + \dfrac{a_2}{a_3} + \dfrac{a_3}{a_4} + \ldots + \dfrac{a_{2021}}{a_{2022}} + \dfrac{a_{2022} }{a_1} < M .

Round the answer to a whole number.