Vrijeme: 08:07

Algebarske avanture prijatnog Lovre | Algebraic adventures of Lovre #5

Lovri je sada već teško pomaknuti se nakon 2 boce dedinog soka od šljiva, polako mu se sklapaju oči i kreće spavati. Budući da Lovro u sebi ima matematičarske gene on sanja sljedeći zadatak:

Neka je n prirodan broj. Neka je x_0  = 0 i neka je x_i > 0 za svaki i \in {1,2,3,...,n}. Ako je x_1+x_2+...+x_n = 1 odredi najmanji M tako da vrijedi \sum_{i=1}^{n} \frac{x_i}{\sqrt{1+x_0+x_1+\ldots +x_{i-1}}\sqrt{x_i+\ldots+x_n}} < M.

Odgovor zaokružite na 6 decimala.

It's already hard for Lovro to move after 2 bottles of grandfather's plum juice, his eyes slowly close and he goes to sleep. Since Lovro has mathematical genes in him, he dreams of the following task:

Let n be a natural number. Let x_0 = 0 and let x_i > 0 for every i \in {1,2,3,...,n}. If x_1+x_2+...+x_n = 1, determine the smallest M such that the following is true; \sum_{i=1}^{n} \frac{x_i}{\sqrt{1+x_0+x_1+\ldots +x_{i-1}}\sqrt{x_i+\ldots+x_n}} < M.

Round the answer to 6 decimal places.