Vrijeme: 20:36

Ortocentričan sistem | Ortocentric system #5

U \triangle ABC, |CA| = 1960\sqrt{2} , |CB| = 6720 i \angle ACB = 45^o. Neka su K, L , M točke koje leže na \overline{BC}, \overline{CA} i \overline{AB} takve da \overline{AK} \perp \overline{BC} , \overline{BL} \perp \overline{CA}, |AM| = |BM|. Neka su N, O, P točke koje leže na \overline{KL} , \overline{BA} i \overline{BL} t.d. je |AN| = |KN| , |BO| = |CO| i A leži na \overline{NP}. Ako je H ortocentar od \triangle MOP, izračunaj |HK|^2.
In \triangle ABC, |CA| = 1960\sqrt{2} , |CB| = 6720 and \angle ACB = 45^o. Let K, L , M be points that lie on \overline{BC}, \overline{CA} and \overline{AB} such that \overline{AK} \perp \overline{BC} , \overline{BL} \perp \overline{CA}, |AM| = |BM|. Let N, O, P be points that lie on \overline{KL} , \overline{BA} and \overline{BL} such that |AN| = |KN| , |BO| = |CO| and A lies on \overline{NP}. If H is the orthocenter of \triangle MOP, determine |HK|^2.