S koliko najviše nula može završavati broj
![1^n+2^n+3^n+4^n](/media/m/4/f/a/4faad132002f9e31bdf84f824ad671c1.png)
za
![n \in \mathbb{N}](/media/m/2/b/a/2ba27c6141ca415bb86bae1d237f1fac.png)
?
What is the maximal number of zeroes with which the number
![1^n+2^n+3^n+4^n](/media/m/4/f/a/4faad132002f9e31bdf84f824ad671c1.png)
za
![n \in \mathbb{N}](/media/m/2/b/a/2ba27c6141ca415bb86bae1d237f1fac.png)
can end?
[lang=hr]
S koliko najviše nula može završavati broj $1^n+2^n+3^n+4^n$ za $n \in \mathbb{N}$?
[/lang]
[lang=en]
What is the maximal number of zeroes with which the number $1^n+2^n+3^n+4^n$ za $n \in \mathbb{N}$ can end?
[/lang]