Neka je
šiljastokutan trokut s opisanom kružnicom
i ortocentrom
. Pretpostavimo da pravac tangentan na opisanu kružnicu trokuta
u
siječe
u točkama
i
tako da vrijedi
,
,
. Nađi površinu
.
Let
be an acute triangle with circumcircle
and orthocenter
. Suppose the tangent to the circumcircle of
at
intersects
at points
and
with
,
,
. Find the area of
.
[lang=hr]
Neka je $ABC$ šiljastokutan trokut s opisanom kružnicom $k$ i ortocentrom $H$. Pretpostavimo da pravac tangentan na opisanu kružnicu trokuta $\triangle HBC$ u $H$ siječe $k$ u točkama $D$ i $E$ tako da vrijedi $|AH|=3$, $|DH|=2$, $|EH|=6$. Nađi površinu $\triangle ABC$.
[/lang]
[lang=en]
Let $ABC$ be an acute triangle with circumcircle $k$ and orthocenter $H$. Suppose the tangent to the circumcircle of $\triangle HBC$ at $H$ intersects $k$ at points $D$ and $E$ with $HA=3$, $HX=2$, $HY=6$. Find the area of $\triangle ABC$.
[/lang]