Vrijeme: 07:42

P-onos i p-redrasude | P-ride and P-rejudice #4

Koliko ima brojeva x \in \{1, 2, \ldots, 5^{99} \cdot 4 \} takvih da je 2^x \equiv 3^{(x^2)} \pmod{5^{100}}?

Find the number of integers x \in \{1, 2, \ldots, 5^{99} \cdot 4 \} such that 2^x \equiv 3^{(x^2)} \pmod{5^{100}}.