Vrijeme: 07:56

Niže | Niže #1

Neka je p=10^9+7. Rekurzivno definiramo niz (a_n)_{n \geq 0}, tako da je a_0=0 i a_{n+1}=a_n^p+1 za n \geq 0. Odredi najmanji prirodan broj m takav da p \mid a_m.

Let p=10^9+7. Define a recursive sequence (a_n)_{ n \geq 0 } as follows: a_0=0, and a_{n+1}=a_n^p+1 for n \geq 0.Find the least positive integer m such that p \mid a_m.