Vrijeme: 20:32

Niže | Niže #4

Za svaki neparan prost broj p, definiramo rekurzivan niz (a_n(p))_{n \geq 0} tako da je a_0(p)=0 i a_{n+1}(p)=(q+1)\left((a_n(p))^{q+1}+(a_n(p))^{q}+a_n(p)+1 \right) za n \geq 0, gdje je q=\frac{p-1}{2}.

Za prirodan broj m \geq 2 kažemo da je divan ako postoji prost p takav da p \mid a_m(p), te p \nmid a_k(p) za svaki k \in \{1,\ldots, m-1\}. Drugim riječima, m je najmanji pozitivan indeks takav da p \mid a_m(p).

Koliko ima divnih brojeva manjih od 1000?

For every odd prime p, define a recursive sequence (a_n(p))_{n \geq 0} by a_0(p)=0 and a_{n+1}(p)=(q+1)\left((a_n(p))^{q+1}+(a_n(p))^{q}+a_n(p)+1 \right) for n \geq 0, where q=\frac{p-1}{2}.

We say a positive integer m \geq 2 is lovely if there exists a prime number p such that p \mid a_m(p), and p \nmid a_k(p) for every k \in \{1,\ldots, m-1\}. In other words, m is the smallest positive index such that p \mid a_m(p).

How many lovely numbers less than 1000 are there?