Vrijeme: 08:05

Niže | Niže #2

Definiramo niz (a_n)_{n \geq 0} rekurzivno s a_0=1, a_{n+1}=(a_n+1)^{a_n+1}-1 za n \geq 0. Odredi najveći prirodan broj k takav da 257^k \mid a_0\cdot a_1 \cdot a_2\ldots \cdot a_{100}.

Define a sequence (a_n)_{n \geq 0} recursively by a_0=1, a_{n+1}=(a_n+1)^{a_n+1}-1 for n \geq 0. Find the greatest positive integer k such that 257^k \mid a_0\cdot a_1 \cdot a_2\ldots \cdot a_{100}.