Vrijeme: 20:27

Niže | Niže #3

Definiramo niz (a_n)_{n \geq 0} rekurzivno s a_0=257, a_{n+1}=(a_n+1)^{a_n}-1 za n \geq 0. Odredi najveći prirodan broj k takav da 257^k \mid a_{100}.

S obzirom da je traženi broj velik, napišite samo njegove zadnje 4 znamenke, u formatu četveroznamenkastog broja.

Define a sequence (a_n)_{n \geq 0} recursively by a_0=257, a_{n+1}=(a_n+1)^{a_n}-1 for n \geq 0. Find the greatest positive integer k such that 257^k \mid a_{100}.

Since this number is large, write only the last 4 digits, in the form of a 4-digit integer.