Vrijeme: 01:15

Missclick | Missclick #5

Primjer 1. Dokažite da iz a + b + c = 0 slijedi: a^4 + b^4 + c^4 = 2(a^2b^2 + b^2c^2 + c^2a^2).

RJEŠENJE. Za početak potrebno je prvu jednakost kvadrirati; \begin{align*}
a + b + c &= 0 /()^2\\
a^2 + b^2 + c^2 + 2ab + 2bc + 2ac &= 0
\end{align*}

Zatim na desnoj strani ostavimo samo kvadrate kako bismo jednakost mogli opet kvadrirati; \begin{align*}
a^2 + b^2 + c^2 &= -2ab - 2bc - 2ac /()^2\\
a^4 + b^4 + c^4 + 2a^2b^2 + 2b^2c^2 + 2a^2c^2 &= 4(a^2b^2 + a^2c^2 + b^2c^2 + 2a^2bc + 2ab^2c + 2abc^2)\\
a^4 + b^4 + c^4 &= 2(a^2b^2 + a^2c^2+b^2c^2) + 4 \cdot 2abc(a + b + c)\\
a^4 + b^4 + c^4 &= 2(a^2b^2 + a^2c^2 + b^2c^2) + 8abc(a + b + c)\\
a^4 + b^4 + c^4 &= 2(a^2b^2 + a^2c^2 + b^2c^2) \\ \\
\end{align*}

*Kako biste dobili 1 bod unesite 4 kao rješenje.

Example 1. Proof that given a + b + c = 0 it holds: a^4 + b^4 + c^4 = 2(a^2b^2 + b^2c^2 + c^2a^2).

SOLUTION. For start you should square first equality; \begin{align*}
a + b + c &= 0 /()^2\\
a^2 + b^2 + c^2 + 2ab + 2bc + 2ac &= 0
\end{align*}

Then, on right side we just leave the squares so that we could square equality once again; \begin{align*}
a^2 + b^2 + c^2 &= -2ab - 2bc - 2ac /()^2\\
a^4 + b^4 + c^4 + 2a^2b^2 + 2b^2c^2 + 2a^2c^2 &= 4(a^2b^2 + a^2c^2 + b^2c^2 + 2a^2bc + 2ab^2c + 2abc^2)\\
a^4 + b^4 + c^4 &= 2(a^2b^2 + a^2c^2+b^2c^2) + 4 \cdot 2abc(a + b + c)\\
a^4 + b^4 + c^4 &= 2(a^2b^2 + a^2c^2 + b^2c^2) + 8abc(a + b + c)\\
a^4 + b^4 + c^4 &= 2(a^2b^2 + a^2c^2 + b^2c^2) \\ \\
\end{align*}

*To get 1 point, you should put 4 in the answer box.