Vrijeme: 18:30

MetaMathastično! | MataMathnifique #5

Odredi prirodne brojeve n i a_1, a_2, \dots, a_n takve da vrijedi a_1 + a_2 + a_3 + \dotsb + a_n = 1000 i da je umnožak a_1 \cdot a_2 \cdot a_3 \dotsb a_n maksimalan.

Kao rješenje upiši a_1^2+a_2^2+...+a_n^2.

Determine the natural numbers n and a_1, a_2, \dots, a_n such that a_1 + a_2 + a_3 + \dotsb + a_n = 1000 and that the product a_1 \cdot a_2 \cdot a_3 \dotsb a_n is maximal.

As a solution, write a_1^2+a_2^2+...+a_n^2.