U

kocki nasumično je odabrano

točaka i

kocaka

(svaka točka malih kocka sadržana je u velikoj kocki). Koliki je očekivan broj odabranih

kocaka koje sadrže barem jednu označenom točku?
In a

cube we randomly pick

points and

cubes

(every point of the little cubes is contained within the big cube). What is the expected number of chosen

cubes which contain at least one chosen point
[lang = hr]
U $3 \times 3 \times 3$ kocki nasumično je odabrano $5$ točaka i $6$ kocaka $1\times1\times1$ (svaka točka malih kocka sadržana je u velikoj kocki). Koliki je očekivan broj odabranih $1\times1\times1$ kocaka koje sadrže barem jednu označenom točku?
[/lang]
[lang = en]
In a $3 \times 3 \times 3$ cube we randomly pick $5$ points and $6$ cubes $1\times1\times1$ (every point of the little cubes is contained within the big cube). What is the expected number of chosen $1\times1\times1$ cubes which contain at least one chosen point
[/lang ]