Neka je

najmanji broj takav da kada odaberemo bilo kojih

(ne nužno različitih) prirodnih brojeva manjih od

moraju postojati dva čiji je umnožak potpun kvadrat neovisno o odabiru. Koliko iznosi

?
[/lang = en] Let

be the smallest number such that when we choose any

(not necessarily distinct) natural numbers smaller than

there must be two whose product is a perfect square regardless of the choice. What is

? [/lang]
[lang = hr]
Neka je $n$ najmanji broj takav da kada odaberemo bilo kojih $n$ (ne nužno različitih) prirodnih brojeva manjih od $30$ moraju postojati dva čiji je umnožak potpun kvadrat neovisno o odabiru. Koliko iznosi $n$?
[/lang]
[/lang = en]
Let $n$ be the smallest number such that when we choose any $n$ (not necessarily distinct) natural numbers smaller than $30$ there must be two whose product is a perfect square regardless of the choice. What is $n$?
[/lang]