Dano je
intervala
(
)gdje je
element skupa
. Neovisno o odabiru
-ova i
-ova možemo garantirati da postoji
intervala s zajedničkim elementom ili
međusobno disjunktnih intervala. Koliko je
?
Given
intervals
(
) where
is an element of the set
. Regardless of the choice of
and
, we can guarantee that there are
intervals with a common element or
mutually disjoint intervals. How much is
?
[lang = hr]
Dano je $37$ intervala $[a_i,b_i]$ ( $0\leq a_i \leq b_i \leq 1$)gdje je $i$ element skupa $\{1,2,3,…,37\}$. Neovisno o odabiru $a$-ova i $b$-ova možemo garantirati da postoji $n$ intervala s zajedničkim elementom ili $n$ međusobno disjunktnih intervala. Koliko je $n$?
[/lang]
[lang = en]
Given $37$ intervals $[a_i,b_i]$ ( $0\leq a_i \leq b_i \leq 1$) where $i$ is an element of the set $\{1,2,3,…,37\}$. Regardless of the choice of $a$ and $b$, we can guarantee that there are $n$ intervals with a common element or $n$ mutually disjoint intervals. How much is $n$?
[/lang]