Vrijeme: 11:11
Zadnji teorem | Last theorem #3
Dano je
intervala
(
)gdje je
element skupa
. Neovisno o odabiru
-ova i
-ova možemo garantirati da postoji
intervala s zajedničkim elementom ili
međusobno disjunktnih intervala. Koliko je
?
intervala
(
)gdje je
element skupa
. Neovisno o odabiru
-ova i
-ova možemo garantirati da postoji
intervala s zajedničkim elementom ili
međusobno disjunktnih intervala. Koliko je
? Given
intervals
(
) where
is an element of the set
. Regardless of the choice of
and
, we can guarantee that there are
intervals with a common element or
mutually disjoint intervals. How much is
?
intervals
(
) where
is an element of the set
. Regardless of the choice of
and
, we can guarantee that there are
intervals with a common element or
mutually disjoint intervals. How much is
?