Dano je

intervala
![[a_i,b_i]](/media/m/e/d/9/ed9b50c2caf1824e1482432c071513bd.png)
(

)gdje je

element skupa

. Neovisno o odabiru

-ova i

-ova možemo garantirati da postoji

intervala s zajedničkim elementom ili

međusobno disjunktnih intervala. Koliko je

?
Given

intervals
![[a_i,b_i]](/media/m/e/d/9/ed9b50c2caf1824e1482432c071513bd.png)
(

) where

is an element of the set

. Regardless of the choice of

and

, we can guarantee that there are

intervals with a common element or

mutually disjoint intervals. How much is

?
[lang = hr]
Dano je $37$ intervala $[a_i,b_i]$ ( $0\leq a_i \leq b_i \leq 1$)gdje je $i$ element skupa $\{1,2,3,…,37\}$. Neovisno o odabiru $a$-ova i $b$-ova možemo garantirati da postoji $n$ intervala s zajedničkim elementom ili $n$ međusobno disjunktnih intervala. Koliko je $n$?
[/lang]
[lang = en]
Given $37$ intervals $[a_i,b_i]$ ( $0\leq a_i \leq b_i \leq 1$) where $i$ is an element of the set $\{1,2,3,…,37\}$. Regardless of the choice of $a$ and $b$, we can guarantee that there are $n$ intervals with a common element or $n$ mutually disjoint intervals. How much is $n$?
[/lang]