Dan je jednakokračan
s osnovicom
duljine
i krakovima duljine
. Točke
su redom na stranicama
takve da je dužina
paralelna osnovici. Točka
se nalazi unutar
tako da je četverokut
tetivan i vrijedi
. Omjer površina četverokuta
i
se može izraziti kao razlomak
, gdje su
i
relativno prosti prirodni brojevi. Koliko je
?
An isosceles
with a base
of length
and legs of length
is given. The points
are respectively on the sides
such that the
is parallel to the base. Point
is inside
so that quadrilateral
is cyclic and
holds. The ratio of the areas of quadrilateral
and
can be expressed as a fraction
, where
and
are relatively prime positive integers. What is the value of
?
[lang=hr]
Dan je jednakokračan $\triangle ABC$ s osnovicom $BC$ duljine $20$ i krakovima duljine $21$. Točke $D, E$ su redom na stranicama $AB, AC$ takve da je dužina $DE$ paralelna osnovici. Točka $F$ se nalazi unutar $\triangle ABC$ tako da je četverokut $ADFE$ tetivan i vrijedi $DF=3, FE=4$. Omjer površina četverokuta $ADFE$ i $\triangle ABC$ se može izraziti kao razlomak $\frac{a}{b}$, gdje su $a$ i $b$ relativno prosti prirodni brojevi. Koliko je $a+b$?
[/lang]
[lang=en]
An isosceles $\triangle ABC$ with a base $BC$ of length $20$ and legs of length $21$ is given. The points $D, E$ are respectively on the sides $AB, AC$ such that the $DE$ is parallel to the base. Point $F$ is inside $\triangle ABC$ so that quadrilateral $ADFE$ is cyclic and $DF=3, FE=4$ holds. The ratio of the areas of quadrilateral $ADFE$ and $\triangle ABC$ can be expressed as a fraction $\frac{a}{b}$, where $a$ and $b$ are relatively prime positive integers. What is the value of $a+b$?
[/lang]