Dan je jednakokračan

s osnovicom

duljine

i krakovima duljine

. Točke

su redom na stranicama

takve da je dužina

paralelna osnovici. Točka

se nalazi unutar

tako da je četverokut

tetivan i vrijedi

. Omjer površina četverokuta

i

se može izraziti kao razlomak

, gdje su

i

relativno prosti prirodni brojevi. Koliko je

?
An isosceles

with a base

of length

and legs of length

is given. The points

are respectively on the sides

such that the

is parallel to the base. Point

is inside

so that quadrilateral

is cyclic and

holds. The ratio of the areas of quadrilateral

and

can be expressed as a fraction

, where

and

are relatively prime positive integers. What is the value of

?
[lang=hr]
Dan je jednakokračan $\triangle ABC$ s osnovicom $BC$ duljine $20$ i krakovima duljine $21$. Točke $D, E$ su redom na stranicama $AB, AC$ takve da je dužina $DE$ paralelna osnovici. Točka $F$ se nalazi unutar $\triangle ABC$ tako da je četverokut $ADFE$ tetivan i vrijedi $DF=3, FE=4$. Omjer površina četverokuta $ADFE$ i $\triangle ABC$ se može izraziti kao razlomak $\frac{a}{b}$, gdje su $a$ i $b$ relativno prosti prirodni brojevi. Koliko je $a+b$?
[/lang]
[lang=en]
An isosceles $\triangle ABC$ with a base $BC$ of length $20$ and legs of length $21$ is given. The points $D, E$ are respectively on the sides $AB, AC$ such that the $DE$ is parallel to the base. Point $F$ is inside $\triangle ABC$ so that quadrilateral $ADFE$ is cyclic and $DF=3, FE=4$ holds. The ratio of the areas of quadrilateral $ADFE$ and $\triangle ABC$ can be expressed as a fraction $\frac{a}{b}$, where $a$ and $b$ are relatively prime positive integers. What is the value of $a+b$?
[/lang]