Vrijeme: 22:01
Zadnji teorem | Last theorem #4
Zadan je potpun graf od
čvora. Bridovi su mu obojani u
boja. Za svaku boju vrijedi: kada bismo gledali samo bridove odabrane boje, graf ne bi bio povezan. Za svaki par boja vrijedi: kada bismo gledali samo bridove koji su obojani u jednu od odabranih boja boje, graf bi bio povezan.
Kolika je najmanja vrijednost koju
može poprimiti?


Kolika je najmanja vrijednost koju

A complete graph of
nodes is given. Its edges are painted in
colors. It is true for every color: if we looked only at the edges of the selected color, the graph would not be connected. For every pair of colors it is true: if we were to look only at the edges that are colored in one of the selected colors, the graph would be connected.
What is the smallest value that
can take?


What is the smallest value that
