[lang=hr]
Za beskonačan niz $a_1,a_2,...$ vrijedi:
$$a_{n+2}=\frac{3}{2}a_{n+1}+a_n$$ za svaki prirodan $n$.\\
Ako je $a_1=1$ koliko mora iznositi $a_2$ da bi niz bio ograničen?
[/lang]
[lang=en]
For the infinite sequence $a_1,a_2,...$ it holds that:
$$a_{n+2}=\frac{3}{2}a_{n+1}+a_n$$ for every natural number $n$.\\
If $a_1=1$, what has to be the value of $a_2$ in order for the sequence to be limited?
[/lang]