Vrijeme: 04:18

Klasično zlo | Classical evil #3

Za beskonačan niz a_1,a_2,... vrijedi: a_{n+2}=\frac{3}{2}a_{n+1}+a_n za svaki prirodan n.
Ako je a_1=1 koliko mora iznositi a_2 da bi niz bio ograničen?

For the infinite sequence a_1,a_2,... it holds that: a_{n+2}=\frac{3}{2}a_{n+1}+a_n for every natural number n.
If a_1=1, what has to be the value of a_2 in order for the sequence to be limited?