Vrijeme: 02:09

Sumu i limes niza voli analiza | Sums, limits and other problems #2

Odredite vrijednost sume \sum_{n=1}^{\infty}\frac{1}{n(n+1)}.

Formalno vrijedi \sum_{n=1}^{\infty}\frac{1}{n(n+1)} = \lim_{i\rightarrow \infty} S_i, gdje je S_i= \sum_{k=1}^{i}\frac{1}{k(k+1)}.
HINT

Determine the value of \sum_{n=1}^{\infty}\frac{1}{n(n+1)}.

Formally, it holds that \sum_{n=1}^{\infty}\frac{1}{n(n+1)} = \lim_{i\rightarrow \infty} S_i, where S_i= \sum_{k=1}^{i}\frac{1}{k(k+1)}.
HINT