Vrijeme: 02:08

N 'n chill #3

Odredite sve h: \mathbb{N} \rightarrow \mathbb{N} takve da \forall x,y \in \mathbb{N} vrijedi
h{(x^2+y^2)}= h{(x)}h{(y)} h{(x^2)} = (h{(x)})^2.
Rješenje zapišite tako da napišete prvih 10 članova niza a_n razdvojene zarezom gdje je: a_n = \sum_{h  \in H} h{(n)}
H je skup funkcija h koje zadovoljavaju uvjete zadatka.
Determine all functions h: \mathbb{N} \rightarrow \mathbb{N} such that \forall x,y \in \mathbb{N}
h{(x^2+y^2)}= h{(x)}h{(y)} h{(x^2)} = (h{(x)})^2.
Give your solution by writing the first 10 terms a_n separated by a comma where: a_n = \sum_{h  \in H} h{(n)}
H is the set of functions h which satisfy the problem statement.