Odredite sve

takve da

vrijedi
Rješenje zapišite tako da napišete prvih

članova niza
razdvojene zarezom gdje je:

je skup funkcija

koje zadovoljavaju uvjete zadatka.
Determine all functions

such that
Give your solution by writing the first

terms
separated by a comma where:

is the set of functions

which satisfy the problem statement.
[lang = hr]
Odredite sve $h: \mathbb{N} \rightarrow \mathbb{N}$ takve da $\forall x,y \in \mathbb{N}$ vrijedi
\\
$$h{(x^2+y^2)}= h{(x)}h{(y)}$$
$$h{(x^2)} = (h{(x)})^2.$$
\\
Rješenje zapišite tako da napišete prvih $10$ članova niza $a_n$ \textbf{razdvojene zarezom} gdje je:
$$a_n = \sum_{h \in H} h{(n)}$$
\\
$H$ je skup funkcija $h$ koje zadovoljavaju uvjete zadatka.
[/lang]
[lang = en]
Determine all functions $h: \mathbb{N} \rightarrow \mathbb{N}$ such that $\forall x,y \in \mathbb{N}$
\\
$$h{(x^2+y^2)}= h{(x)}h{(y)}$$
$$h{(x^2)} = (h{(x)})^2.$$
\\
Give your solution by writing the first $10$ terms $a_n$ \textbf{separated by a comma} where:
$$a_n = \sum_{h \in H} h{(n)}$$
\\
$H$ is the set of functions $h$ which satisfy the problem statement.
[/lang]