Vrijeme: 02:04

Vjerojatno lanac iz kinematike | Probably from kinematics #4

U prvom kvadrantu koordinatnog sustava se nalazi dvodimenzionalnog spremnik horizontalne duljine 2\, m i visine 1\,m u donjem lijevom kutu spremnika(neka se donji lijevi kut nalazi u točki (0,0)) nalazi se 5 jako malenih čestica od kojih svaka u trenutku t=0 ima nasumičan vektor smjera određen preko nasumično odabrane točke iz ravnine i točke (0,0) tako da je brzina iz [0,4] \, ms^{-1} i kut između [0,\frac{\pi} {2}].
Spremnik je podijeljen s dva vertikalna pravca x=0.8 i x=1.2.
Kolika je vjerojatnost da se svih pet čestica nalaze između ova dva pravca nakon 1 sekunde?
Pretpostavite da su čestice toliko malene da se ne mogu međusobno sudarati.

In the first quadrant of the coordinate system, there is a two-dimensional container of horizontal length 2\, m and height of 1\,m. In the left bottom part of the container (let that be point (0,0)) there are 5 extremely small particles, each of which in time t=0 has a random direction vector determined with a random point from the plane and with point (0,0) such that the velocity is between [0,4] \, ms^{-1} and the angle is between [0,\frac{\pi} {2}]].
The container is divided into two parts by vertical lines x=0.8 and x=1.2.
What's the probability that all five particles find themselves between those two lines after 1 second?
You may suppose that particles are so small that they cannot collide one with another.