Vrijeme: 22:15
Vjerojatno lanac iz kinematike | Probably from kinematics #4
U prvom kvadrantu koordinatnog sustava se nalazi dvodimenzionalnog spremnik horizontalne duljine
i visine
u donjem lijevom kutu spremnika(neka se donji lijevi kut nalazi u točki
) nalazi se
jako malenih čestica od kojih svaka u trenutku
ima nasumičan vektor smjera određen preko nasumično odabrane točke iz ravnine i točke
tako da je brzina iz
i kut između
.
Spremnik je podijeljen s dva vertikalna pravca
i
.
Kolika je vjerojatnost da se svih pet čestica nalaze između ova dva pravca nakon
sekunde?
Pretpostavite da su čestice toliko malene da se ne mogu međusobno sudarati.






![[0,4] \, ms^{-1}](/media/m/c/5/b/c5b1d368916bceecdc716f53b6d9cf0b.png)
![[0,\frac{\pi} {2}]](/media/m/c/4/4/c444f378dc333f50e2dba634ad695486.png)
Spremnik je podijeljen s dva vertikalna pravca


Kolika je vjerojatnost da se svih pet čestica nalaze između ova dva pravca nakon

Pretpostavite da su čestice toliko malene da se ne mogu međusobno sudarati.
In the first quadrant of the coordinate system, there is a two-dimensional container of horizontal length
and height of
. In the left bottom part of the container (let that be point
) there are
extremely small particles, each of which in time
has a random direction vector determined with a random point from the plane and with point
such that the velocity is between
and the angle is between
.
The container is divided into two parts by vertical lines
and
.
What's the probability that all five particles find themselves between those two lines after
second?
You may suppose that particles are so small that they cannot collide one with another.






![[0,4] \, ms^{-1}](/media/m/c/5/b/c5b1d368916bceecdc716f53b6d9cf0b.png)
![[0,\frac{\pi} {2}]]](/media/m/9/5/a/95aca457e2b03e659a0df09dd5784024.png)
The container is divided into two parts by vertical lines


What's the probability that all five particles find themselves between those two lines after

You may suppose that particles are so small that they cannot collide one with another.