Vrijeme: 02:03

Dali smo mu ime! | We gave it a name! #2

U trokutu ABC s najvećom stranicom CA vrijedi AB=279, BC=482. Neka je M polovište stranice CA, D točka na stranici AC tako da je BD simetrala \angle ABC. Neka je E točka na BC takva da je DE \perp BC. Neka je F=DE \cap BM. Nađi \frac{DF}{EF}. Odgovor zaokruži na 4 decimale.
In the triangle ABC with the largest side CA it holds AB=279, BC=482. Let M be the midpoint of side CA, D be a point on side AC such that BD is the bisector of \angle ABC. Let E be a point on BC such that DE \perp BC. Let F=DE \cap BM. Find \frac{DF}{EF}. Round the answer to 4 decimal places.