Vrijeme: 18:29

Dali smo mu ime! | We gave it a name! #4

Neka je APQBR konveksan peterokut upisan u kružnicu čiji je promjer \overline{AB}. Tangenta na kružnicu u Q siječe pravce BP i BR u U i V, redom. Pretpostavimo da \overline{AQ} raspolavlja \angle UAR i da vrijedi AQ=QR. Nađi minimalnu vrijednost izraza: \frac{AV}{AP} + \left( \frac{AU}{AB} \right)^2 Odgovor zaokruži na 3 decimale.
Let APQBR be a convex pentagon inscribed in a circle whose diameter is \overline{AB}. The tangent to the circle in Q intersects the lines BP and BR in U and V, respectively. Assume that \overline{AQ} bisects \angle UAR and AQ=QR. Find the minimum value of the expression: \frac{AV}{AP} + \left( \frac{AU}{AB} \right)^2 Round the answer to 3 decimal places.