Neka je
konveksan peterokut upisan u kružnicu čiji je promjer
. Tangenta na kružnicu u
siječe pravce
i
u
i
, redom. Pretpostavimo da
raspolavlja
i da vrijedi
. Nađi minimalnu vrijednost izraza:
Odgovor zaokruži na
decimale.
Let
be a convex pentagon inscribed in a circle whose diameter is
. The tangent to the circle in
intersects the lines
and
in
and
, respectively. Assume that
bisects
and
. Find the minimum value of the expression:
Round the answer to
decimal places.
[lang=hr]
Neka je $APQBR$ konveksan peterokut upisan u kružnicu čiji je promjer $\overline{AB}$. Tangenta na kružnicu u $Q$ siječe pravce $BP$ i $BR$ u $U$ i $V$, redom. Pretpostavimo da $\overline{AQ}$ raspolavlja $\angle UAR$ i da vrijedi $AQ=QR$. Nađi minimalnu vrijednost izraza:
\[ \frac{AV}{AP} + \left( \frac{AU}{AB} \right)^2 \]
Odgovor zaokruži na $3$ decimale.
[/lang]
[lang=en]
Let $APQBR$ be a convex pentagon inscribed in a circle whose diameter is $\overline{AB}$. The tangent to the circle in $Q$ intersects the lines $BP$ and $BR$ in $U$ and $V$, respectively. Assume that $\overline{AQ}$ bisects $\angle UAR$ and $AQ=QR$. Find the minimum value of the expression:
\[ \frac{AV}{AP} + \left( \frac{AU}{AB} \right)^2 \]
Round the answer to $3$ decimal places.
[/lang]