Vrijeme: 02:08

Koja jednadžba? | Equation, whaaat? #4

Dana je dužina \overline {PT} duljine 1. P i T su na kružnicama k_1 i k_2 takvim da su im središta s različitih strana PT. Radius k_1 je \frac{\sqrt{2}}{2}, a k_2 je \frac{\sqrt{3}}{3}. Pravac kroz P sijeće k_1 i k_2 još u A i B. Koliko je max |AB|?

The length of \overline {PT} is 1. P and T are on circles k_1 and k_2 such that their centers are on different sides of PT. The radius of k_1 is \frac{\sqrt{2}}{2}, and that of k_2 is \frac{\sqrt{3}}{3}. The line passing through P intersects k_1 and k_2 at A and B, respectively. What is the maximum value of |AB|?