Vrijeme: 02:07

Povratak kutomjera | Return of the protractor #2

Neka su točke E,F,G redom polovišta stranica AB,BC,AD četverokuta ABCD. Poznato je da je GE okomito na AB, GF okomito na AC te da je \angle DGC=30^{\circ}. Ako se pravci AB i CD sijeku u P, pravci EF i BD u Q, a pravci PQ i DE u T odredi \angle DTP. Rješenje zaokruži na dvije decimale.
Let the points E,F,G respectively be the halves of the sides AB,BC,AD of the quadrilateral ABCD. It is known that GE is perpendicular to AB, GF is perpendicular to AC and that \angle DGC=30^{\circ}. If lines AB and CD intersect in P, lines EF and BD in Q, and lines PQ and DE in T determine \angle DTP. Round the solution to two decimal places.