Vrijeme: 02:05

Povratak kutomjera | Return of the protractor #5

Neka je ABC trokut u kome je \angle BAC = 60^{\circ}. Neka su D,E točke na BC i AC redom takve da je AD simetrala \angle BAC i BE je simetrala \angle ABC. Ako vrijedi AB + BD = AE + EB, koliko je \angle ABC - \angle ACB? Rješenje zaokruži na dvije decimale.
Let ABC be a triangle in which \angle BAC = 60^{\circ}. Let D,E be points on BC and AC respectively such that AD is the bisector of \angle BAC and BE is the bisector of \angle ABC. If AB + BD = AE + EB holds, what is \angle ABC - \angle ACB? Round the solution to two decimal places.