Vrijeme: 02:08

Veoma nasumičan geometrijski lanac | Pretty random geometry chain #4

U unutrašnjosti trokuta ABC u kome je \angle BAC=60^{\circ} i \angle ABC=20^{\circ} uočena je točka Q takva da je \angle QCB= 3 \cdot \angle  QBC. Simetrale \angle QBA i \angle QCA sijeku se u točki P, pri čemu je \angle PAB=20^{\circ}. Nađi \angle QBC. Rješenje zaokruži na dvije decimale.
In the interior of the triangle ABC in which \angle BAC=60^{\circ} and \angle ABC=20^{\circ} the point Q was observed such that \angle QCB= 3 \cdot \angle QBC. Bisectors \angle QBA and \angle QCA intersect at point P, where \angle PAB=20^{\circ}. Find \angle QBC. Round the solution to two decimal places.