Patuljci i orci ponovno ratuju! Jedan patuljak bez problema uništi jednoga ili dva orka. Tri orka su jednako snažna kao jedan patuljak i međusobno se mogu boriti neograničeno dugo bez rezultata i značajnih gubitaka s obe strane. Četiri orka savladaju jednog patuljka u točno tri minute. Četiri i više orka poraze jednog patuljka u proporcionalno kraćem vremenu (umnožak broja oraka (za 4 i više oraka) i vremena potrebnog za poraziti patuljka je konstantan).
Ako u jednom izoliranom dijelu bitke sudjeluje patuljka i orka, koja strana će pobijediti i za koliko najmanje vremena?
Rješenje zapišite u obliku pobjednici:a+b/c, gdje pobjednici mogu biti ili patuljci ili orci, dok a+b/c označava broj sekundi zapisan u obliku mješovitog razlomka.
Dwarves and orcs are at war again! One dwarf can take out one or two orcs without any problem. Three orcs are as strong as one dwarf and can fight each other indefinitely without results and significant losses on both sides. Four orcs defeat one dwarf in exactly three minutes. Four or more orcs defeat one dwarf in a proportionally shorter time (the product of the number of orcs (for 4 or more orcs) and the time needed to defeat the dwarf is constant).
If dwarves and orcs participate in one isolated part of the battle, which side will win and in how much time?
Write your answer in form winners:a+b/c, where winners can be either dwarfes or orcs, while a+b/c denotes the number of seconds written in the form of mixed rational number.
[lang=hr]
\emph{Patuljci i orci ponovno ratuju!} Jedan patuljak bez problema uništi jednoga ili dva orka. Tri orka su jednako snažna kao jedan patuljak i međusobno se mogu boriti neograničeno dugo bez rezultata i značajnih gubitaka s obe strane. Četiri orka savladaju jednog patuljka u točno tri minute. Četiri i više orka poraze jednog patuljka u proporcionalno kraćem vremenu (umnožak broja oraka (za 4 i više oraka) i vremena potrebnog za poraziti patuljka je konstantan).
Ako u jednom izoliranom dijelu bitke sudjeluje $4$ patuljka i $13$ orka, koja strana će pobijediti i za koliko najmanje vremena?
Rješenje zapišite u obliku \textbf{pobjednici:a+b/c}, gdje \textbf{pobjednici} mogu biti ili \textbf{patuljci} ili \textbf{orci}, dok \textbf{a+b/c} označava broj \emph{sekundi} zapisan u obliku mješovitog razlomka.
[/lang]
[lang=en]
\emph{Dwarves and orcs are at war again!} One dwarf can take out one or two orcs without any problem. Three orcs are as strong as one dwarf and can fight each other indefinitely without results and significant losses on both sides. Four orcs defeat one dwarf in exactly three minutes. Four or more orcs defeat one dwarf in a proportionally shorter time (the product of the number of orcs (for 4 or more orcs) and the time needed to defeat the dwarf is constant).
If $4$ dwarves and $13$ orcs participate in one isolated part of the battle, which side will win and in how much time?
Write your answer in form \textbf{winners:a+b/c}, where \textbf{winners} can be either \textbf{dwarfes} or \textbf{orcs}, while \textbf{a+b/c} denotes the number of \emph{seconds} written in the form of mixed rational number.
[/lang]